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Abstract

Current approaches to evaluating frontier Al safety typically emphasize static
benchmarks, third-party annotations, and red-teaming. In this paper, we review
existing evaluation methods, highlight limitations, and argue that Al safety research
should incorporate human-centered evaluations that measure harmful capability
uplift—the marginal increase in a user’s ability to cause harm with a frontier model
beyond what conventional tools already enable. Drawing on nascent work in this
area, we position harmful capability uplift as a foundational consideration for Al
safety, ground it in prior research, and provide concrete methodological guidance
for systematic evaluation. We conclude with actionable implementation steps for
developers, researchers, funders, and regulators to make harmful capability uplift
evaluation a standard practice alongside traditional benchmarks.

1 Introduction

Recent advances in frontier AI models have dramatically expanded their capabilities. Systems that
once struggled with basic question answering now produce runnable software code, integrate and
interpret multiple forms of data (e.g., images, text, audio), and complete complex tasks at the level
of domain experts. Consequently, their potential to benefit as well as harm society has expanded
dramatically. In response, the Al safety community has developed an extensive toolkit of in-vitro
evaluations—benchmarks for truthfulness, toxicity, bias, refusal consistency, jailbreak resistance,
autonomy, and more [Gehman et al.| 2020, |Lin et al.| 2022, [Rauh et al., 2022} |Chao et al., 2024} (Cui
et al.,[2024} [Liu et al., [2023|]. These tests are fast, reproducible, and increasingly standardized, with
each major model debut accompanied by a scorecard of headline metrics.

However, strong performance on static benchmarks often coexists with headline-grabbing failures in
the wild [EI Atillah, 2023} Nelken-Zitser, 2024, Milmo, [2023]]. For example, frontier models that
pass toxicity filters can still amplify extremist rhetoric when prompted creatively [Gilbert, [2024]].
Empirically, improvements in scores on safety benchmarks track general capability scaling, leaving
open the possibility of safety-washing—relabeling raw performance improvements as safety progress
[Ren et al.| 2024]. While some model evaluations involve people, most position humans as external
judges rather than embedded actors. Researchers may recruit people to label outputs for harmfulness
[Bai et al., 2022, \Cheong et al., 2025| Grey and Segerie, 2025], but they rarely assess how much harm
people can cause when using the same model as a co-conspirator. Moreover, current static evaluation
approaches cannot capture the harms that emerge through sustained human-Al interactions [[brahim
et al.,[2024].

Preprint.



Current Evaluations Harmful Capability Uplift

Current model-centric, static evaluations focus on Dynamic uplift evaluations focus on the marginal advantage the
isolated model outputs and static benchmarks. human-Al system provides over the human alone.
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Figure 1: Approaches to Al Safety Evaluation. (Left) Current evaluations focus on isolated AI model
outputs using static benchmarks, with human judges occasionally assessing the output from external
observation points. (Right) The proposed approach evaluates the human-Al system, measuring what
malicious tasks a human-Al combination can accomplish using the harmful capability uplift metric.

Given these limitations, we argue that Al safety research should incorporate human-centered
evaluations that focus on measuring harmful capability uplift—the incremental change in a
user’s capacity to cause harm when assisted by frontier models. Evaluating harmful capability
uplift shifts the focus of Al safety from “Does the model ever emit dangerous content?” toward
“Does the model meaningfully increase the harmful actions users can perform?”’

Evaluating harmful capability uplift, however, is methodologically demanding. It requires experiments
with human subjects that capture the dynamic, adaptive ways people incorporate suggestions from
frontier models into their workflows. As highlighted by [Ibrahim et al., 2024f], human—computer
interaction (HCI) research offer useful tools for Al safety research. For instance, researchers
have for decades conducted user studies [Lazar et al., [2017]], run controlled experiments [Carroll,
1997]], and developed theory-driven models of augmentation [Licklider} |1960]; yet these methods
have been used almost exclusively for benign applications—such as writing assistance or medical
decision-making—rather than for assessing malicious scenarios. Malicious tasks introduce distinct
methodological challenges, including adversarial objectives, hidden ground truth, and serious ethical
constraints on “live-fire” trials.

To position harmful capability uplift as a standard practice in Al safety evaluation, we structure
our analysis around four key contributions: First, we examine the three main pillars of today’s
safety evaluation—static benchmarks, third-party annotations, and red teaming—and highlight
their systematic blind spots in measuring how Al systems amplify human capabilities for harmful
purposes (§2); Second, we frame harmful capability uplift as a fundamental consideration in Al
safety, ground it in human-AlI collaboration research, and demonstrate its relevance to emerging
governance frameworks (§3)); Third, drawing on established practices in HCI and behavioral science,
we provide concrete methodological guidance for systematic uplift evaluation, including experimental
design principles, proxy task validation through task similarity frameworks, recommended statistical
practices, and predictive models that enable generalization across rapidly evolving Al systems
(§4); Fourth, we translate our methodology into actionable steps for key stakeholders—developers,
researchers, funders, and regulators—and propose coordinated infrastructure through Al Safety
Institutes to enable routine, standardized, and audit-ready harmful capability uplift assessment (§3)).

Current Al safety evaluations rarely measure how much frontier models amplify harmful human
capabilities beyond conventional tools. Robust, human-centered measurement of harmful capability
uplift is needed to align Al safety assessments with realistic risks.



2 Gaps in Existing Al Safety Evaluations

2.1 Static Benchmarks: Strong Statistical Measures but Limited Real-World Insight

Many current evaluations of Al safety involve comparing a model’s behavior in vitro against a set of
static tests. A growing ecosystem of public datasets probes specific failure modes such as truthfulness,
toxicity, bias, refusal consistency, and jailbreak resistance [[Gehman et al., 2020, Lin et al., 2022,
Rauh et al.| 2022} |Chao et al., 2024, |Cui et al., [2024]} [Liu et al., [2023]]. Major Al labs often report
performance on these benchmarks when releasing new models, presenting these metrics as indicators
of safety progress [DeepMind, 2025b} OpenAl et al.| [2024} |Anthropic), 2025b), |Grattafiori et al., [2024].

While these benchmarks can provide valuable insights into model behavior and potential risks, they
face important limitations. For example, models can “sandbag”—deliberately under-performing
or refusing during public evaluations to conceal stronger, potentially dangerous capabilities that
may surface after deployment [[van der Weijj et al.,|2024]. Recent meta-analyses show that safety
benchmark performance often tracks general capability improvements rather than techniques that
uniquely reduce risk [Ren et al., [2024]], which can lead to “safetywashing,” where ordinary capability
scaling (more parameters or compute) masquerades as safety progress [Ren et al., 2024} |Grey and
Segerie, 2025]]. Additionally, as highlighted by [Ibrahim et al.| [2024]], static benchmarks cannot
capture the harms that emerge through sustained back-and-forth human-Al interactions.

2.2 Human Evaluations: Assessors not Collaborators

While some evaluations collect human data, they typically employ human participants as external
evaluators rather than integral components in the safety evaluation. In these studies, human raters
assess model outputs for harmfulness, truthfulness, or helpfulness, providing qualitative judgments
that complement quantitative benchmark scores [Liang et al.| 2022| |(Ouyang et al.|[2022| Bai et al.,
2022||. For example, when evaluating the chemical, biological, radiological and nuclear (CBRN)
risk posed by their model, Google asked domain experts to judge whether the Gemini API Ultra
model and Gemini Advanced could accurately answer a series of 50 adversarial questions [DeepMind)
2025b].

This approach, while valuable for identifying problematic outputs, has significant limitations as a
comprehensive measure of Al safety. The human evaluators function primarily as measurement
instruments rather than active participants whose capabilities might be directly influenced by the
model. These evaluators may also exhibit limitations in domain knowledge and inherent biases that
affect judgment consistency [Morgan, [2014, |Dror}, 2020, Hamildinen and Alnajjar, 2021]]. Even in
specialized fields like biosecurity, substantial expert disagreement exists regarding the magnitude of
risk AT advances pose, with a recent Nuclear Threat Initiative report highlighting significant variance
in expert assessment of Al biosecurity threats and appropriate mitigation strategies [Carter et al.|
2023||. By positioning humans outside the human-Al interaction loop, these evaluations also fail
to capture how people might leverage, modify, or operationalize model outputs to pursue harmful
objectives.

2.3 Red Teaming: Important Probe but Incomplete Safeguard

In response to these limitations, evaluations have increasingly adopted red-teaming studies, which
involve deliberate attempts to elicit harmful outputs from frontier models [Ganguli et al., [2022].
Frontier labs deploy both in-house and external red-team specialists to probe models pre-release, with
findings distilled into public system cards [|Anthropic} [2025b, DeepMind, |2025b| (OpenAl et al., [2024].
Community-scale events and automated approaches using language models to generate adversarial
prompts at scale complement these efforts [Perez et al.,[2022, [Hong et al.| 2024} Beutel et al., 2024,
Marks et al., |2025[]. A consistent pattern emerges: models that excel on standard benchmarks can
still be coerced into disallowed behavior, underscoring the need for sustained adversarial exploration.

However, today’s red-teaming practice remains elicitation-centric—exercises end as soon as harmful
content appears, leaving unanswered whether and how users might operationalize that content. Many
campaigns occur behind closed doors, producing only terse system card summaries with limited
methodological detail and little to no possibility for reproducibility [Anthropic, [2025b, [DeepMind,
2025b, (OpenAl et al., 2024]. Critically, red-team reports rarely include counterfactual baselines
to measure what motivated humans could accomplish using conventional tools such as standard
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Figure 2: The Harmful Capability Uplift Framework. (Left) The harmful capability uplift metric
U quantifies how much frontier models amplify the ability of people to perform malicious tasks.
(Middle) Novel capability acquisition occurs when Al assistance enables previously impossible tasks.
(Right) Hypothetical biosecurity analysis demonstrates how harmful capability uplift can vary across
task dimensions.

web search, leaving the incremental harmful capability uplift unmeasured. This gap is particularly
concerning as the field increasingly maps qualitative red-teaming findings to quantitative metrics
without addressing the foundational question: How much do these systems amplify users’ harmful
capabilities beyond existing resources?

3 The Importance but Dearth of Harmful Capability Uplift Experiments

We argue the field needs to adopt an explicit measure of harmful capability uplift—the marginal
advantage a determined user gains from wielding a model, relative to open-source documents, search
engines, and commodity software already available. Leading Al companies have acknowledged the
importance of this concept: OpenAl vows to track whether models “provide meaningful counter-
factual assistance” to novice actors creating biological threats [[OpenAlL [2025[, Anthropic pledges
to identify if models “significantly help” individuals deploy CBRN weapons [Anthropic| [2025a]],
and Google promises to track assistance with “high impact cyber attacks” [DeepMind, [2025a]. Yet
companies operationalize these commitments through incompatible methodologies—varying tasks,
evaluation criteria, and reporting practices—preventing meaningful comparison and cumulative
scientific progress.

Harmful capability uplift occupies a critical blind spot in human-Al collaboration research. While
researchers extensively study how Al augments capabilities in constructive contexts—from clinical
decision support to collaborative writing [Mirowski et al., 2023 Petridis et al., [ 2023| Takerngsaksiri
et al.| 2024, Kim et al.| 2025]—they have largely overlooked malicious applications. Insights from
benign tasks do not readily generalize to malicious contexts, as these tasks exhibit fundamentally
different characteristics: adversarial objectives with obscured methods versus transparent evaluation
criteria, exploitation of system vulnerabilities versus operation within designed parameters, and focus
on worst-case uplift for determined bad actors versus average-case improvements for typical users
[Vaccaro et al., 2024].

Indeed, our review reveals a concerning lack of research in harmful capability uplift assessment.
Existing studies—including evaluations by Anthropic [Anthropic, |2025b]], OpenAl [Patwardhan et al.|
2024], and Meta [Grattafiori et al., 2024]—suffer from inadequate sample sizes, missing control
conditions, and inconsistent evaluation frameworks that prevent meaningful cross-study comparison.
As frontier models approach capability thresholds in high-risk domains, the field urgently needs
more systematic, reproducible methodologies grounded in established HCI and behavioral science
practices.



4 A Methodological Framework for Improving Harmful Capability Uplift
Studies

4.1 Experimental Design: From Research Questions to Necessary Conditions

The accurate measurement of harmful capability uplift requires, at minimum, a three-condition
experimental design that allows for direct comparison between: (1) Human (or group) alone in
which individual human participants or teams complete tasks without Al assistance but with access to
common tools like web search engines, documentation, and other existing resources typically available
to them. This condition establishes the baseline capability level of humans using conventional
methods, ensuring a realistic comparison that does not artificially deflate unassisted performance;
(2) AI alone in which the Al system completes the same tasks independently, demonstrating the
system’s autonomous capabilities. This condition helps distinguish whether observed outcomes in the
human-AlI condition reflect genuine synergy or merely the AI’s capabilities being channeled through
a human operator; (3) Human-AI (or group-Al) system in which individual participants or teams
complete tasks with Al assistance, using the same interface and interaction patterns that would be
available in real-world deployments. This condition measures the integrated performance that results
from human-AlI collaboration.

Harmful capability uplift depends strongly on the specific conditions under which humans and Al
interact. Evaluations should therefore explicitly consider deployment factors that could amplify
performance, such as participant training or familiarity with the model, improvements in model
capabilities due to fine-tuning, scaffolding or increases in inference-time compute, and repeated
interactions that allow users to adapt or learn over time. Understanding these factors helps iden-
tify realistic scenarios where human—AlI collaborations may cross critical thresholds of capability,
informing proactive safety measures.

4.2 The Proxy Task Challenge: Using Safe Tasks to Predict Dangerous Capabilities

Selecting appropriate tasks is one of the most critical yet challenging aspects of harmful capability
uplift assessment. Directly measuring performance in tasks with genuine harmful potential, such as
developing biological weapons, executing sophisticated cyberattacks, or designing misinformation
campaigns, raises clear ethical and security concerns. Consequently, researchers should rely on proxy,
potentially stylized, tasks that approximate the capabilities of interest while remaining ethically
acceptable. However, performance on proxy tasks does not always reliably predict outcomes in
real-world decision-making scenarios, especially in human—AlI interactions [Bucinca et al., |2020]],
introducing unavoidable external validity challenges.

To address this challenge systematically, we propose leveraging recent methodological advances
from integrative experimental frameworks, such as the Task Space approach [[Almaatouq et al., 2022|
Hu et al., 2023]]. This approach quantifies task similarities along multiple theoretically informed
dimensions, allowing researchers to precisely characterize how proxy tasks relate to genuine tasks of
concern. Researchers can validate proxies by first demonstrating predictive validity for performance
on similar yet distinct tasks within this multidimensional space. Specifically, an embedding-based
task similarity index can be defined to quantify distances between tasks, requiring proxy tasks to
demonstrate strong predictive performance (e.g., an out-of-sample R? > 0.25) for tasks within a
prespecified similarity range before extending findings to dissimilar target tasks (see Section [8.2] for
more details). By publishing both the task taxonomy and associated similarity values, researchers
can position new proxy tasks within a common, standardized space, thereby facilitating cumulative
scientific progress rather than disconnected, single-study efforts

4.3 Quantifying Harmful Capability Uplift: Metrics, Interpretation, and Applications

We propose the harmful capability uplift ratio as the primary metric for quantifying the capability
enhancement provided by Al systems. We define this ratio as the Human-AI performance divided by

Human-alone performance U = %.

This metric has several advantages for safety assessment and was recently employed by Anthropic
in their uplift evaluation study [Anthropic, [2025b]. It offers intuitive interpretability: a ratio of
1.0 indicates no capability enhancement, while values greater than 1.0 represent proportional im-
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Figure 3: The Proxy Task Challenge. (Left) Direct assessment of harmful capabilities raises ethical
concerns, necessitating safe proxy tasks. (Middle) A formal task similarity framework quantifies the
predictive relationship between proxy and target tasks. (Right) Empirical validation studies establish
when proxy task performance reliably predicts capabilities on target tasks of concern, enabling
evidence-based safety assessment without conducting harmful experiments.

provement (e.g., U = 5.0 indicates that Al assistance increases human performance by 5x). This
intuitive scaling allows both technical and non-technical stakeholders to grasp the magnitude of
capability enhancement without specialized knowledge. Additionally, as a unitless measure, the
harmful capability uplift ratio enables meaningful comparisons across diverse tasks, domains, and
studies that may use fundamentally different underlying performance metrics [Campero et al.| 2022].
Whether the base measure is accuracy percentage, items processed per minute, or quality score on a
subjective scale, the proportional improvement captured by the ratio remains comparable.

The ratio also accommodates the binary case where a user with zero baseline ability becomes newly
capable of a harmful task after receiving Al assistance—for example, a novice who, without any
prior knowledge of gene synthesis, prompts: “Give me a step-by-step guide to synthesizing polio
virus from mail-order DNA.” In this case, H = 0, since the user could not have completed the task
unaided, and the denominator collapses, so U — oco. We interpret U = oo as a “novel-capability
flag” It signals that the system crosses a qualitative boundary—transforming an otherwise incapable
actor into a viable threat—and therefore warrants the highest level of scrutiny.

The harmful capability uplift ratio operationalizes the concept of human augmentation from the
human-AlI synergy literature [Vaccaro et al., [2024], quantifying scenarios where human-Al com-
binations outperform humans working alone. For researchers interested in measuring human-Al
synergy—where the human-Al combination outperforms both humans alone and Al alone—the
denominator can be modified to max(H, Al), creating a synergy ratio S = % where values
above 1.0 indicate genuine synergistic effects beyond the performance of the strongest individual
agent.

4.4 Statistical Approaches for Safety-Critical Assessments: Design, Analysis, and Reporting
Standards

Statistical practice for harmful capability uplift studies should invert the usual priorities of behavioral
science. Here, a false-negative—overlooking a model that nudges a malicious actor past a catastrophic
threshold—is costlier than a false alarm. Sample-size planning should therefore target the smallest
effect size of safety concern (e.g., U > 5) and deliver at least 95% power at o = 0.05; this mirrors
the standard for many Registered Reports [Chambers and Tzavella, 2022, Henderson and Chambers,
2022] and guards against under-powered designs that now dominate the literature [Mouton et al.|
2024, |Patwardhan et al.| 2024, |/Anthropic| 2025b, |Grattafiori et al., 2024]]. Corrections for multiple
hypotheses should also be lenient: stringent corrections such as Bonferroni can hide real risks, so
authors should report both corrected and raw p-values with full effect sizes and CIs. Non-significant
results warrant equivalence testing (e.g., TOST) [Lakens} 2017 rather than claims of “no significant
difference,” ensuring that any assertion of safety is backed by evidence that effects fall inside
prespecified, policy-relevant bounds.

Robust inference must be paired with a robust process. Preregistration [Nosek et al., 2018] is
essential because uplift experiments can steer deployment decisions and expose dual-use methods.



We recommend that the national Al safety institutes (AISIs) like the U.S. AI Safety Institute and the
U.K. AI Security Institute host a secure preregistration track, offering access-controlled repositories
and independent methodological review before data collection begins. This added layer of governance
preserves transparency for bona-fide auditors while preventing premature disclosure of sensitive
protocols.

4.5 Forecasting Risk: Scaling Uplift Assessment Across Model Generations

Frontier models now leapfrog one another on a weekly cadence, while large human-subjects studies
that probe genuinely harmful capability uplift can take months to plan, run, and analyze. If we insisted
on rerunning a full harmful capability uplift study at overly frequent stages of the development or
release cycles, our evaluation pipelines could freeze and policymakers could become stuck legislating
yesterday’s threat landscape. A pragmatic alternative is to forecast harmful capability for new
models by reusing existing experimental data. Concretely, we can fit regressions of the form:
U ~ 61BM; + e BMsy + ... + B, BM,, where the (3; coefficients represent how shifts in familiar
public benchmarks BM;, ..., BM,, translate into shifts in a particular harmful capability uplift.
Once trained, this surrogate lets us estimate the harmful capability uplift of a new minor model
version from its relatively cheaper-to-obtain benchmark scores alone, reserving the human trials for
spot checks and cases when the forecasted uplift breaches a predetermined threshold. The approach
also naturally rewards the creation of benchmarks that are maximally predictive for harmful capability
uplift, incentivizing a more deliberate search for leading indicators of risk.

Crucially, “Al capability” is no monolith; the predictors that flag biorisk need not be the same ones
that foreshadow a jump in cyber-exploitation skill. We can therefore curate domain-specific predictor
sets: biorisk uplift, for instance, might be pegged to a blend of instruction-following robustness and
graduate-level biology exams, whereas cybersecurity uplift could combine general coding competence
(e.g., HumanEval) with scores on exploit-writing or penetration-testing challenges. By decomposing
capability space in this way, we gain sharper forecasts and avoid over-generalizing from irrelevant
signals—allowing oversight to keep pace with rapidly iterating models without grinding progress to a
halt.

4.6 Building Causal Understanding: From Mechanisms to Predictions

The most sustainable approach to generalization challenges lies in the development and testing of
causal theories that explain why and how Al assistance enhances human performance. These theories
should decompose harmful capability uplift mechanisms by identifying how AI outputs enhance
human performance. Does the Al primarily augment human capabilities by providing information
the human lacks, by accelerating processes the human could perform more slowly, by suggesting
novel approaches the human wouldn’t consider, or through other mechanisms? Additionally, they
should characterize human-Al interaction patterns by analyzing how humans integrate Al outputs
into their workflows and decision processes. Do they use Al as an oracle, a tool, a collaborator, or in
some other capacity? How do these interaction patterns mediate the translation of Al capabilities into
performance enhancement? Based on these identified mechanisms and interaction patterns, we can
develop testable predictions about how different types of model improvements will affect harmful
capability uplift across task categories.

5 Implementation Roadmap: Translating Methodology into Practice

We distill our methodological proposals into concrete actions for four key stakeholder groups to make
harmful capability uplift evidence as routine and audit-ready as benchmark scores.

5.1 For Model Developers: Integrating Uplift Assessment into Development Cycles

Developers should use validated proxy tasks and benchmark-based uplift estimates to monitor harmful
capability predeployment. These can be supplemented by small-scale human studies—fast, focused
tests on high-priority tasks—to validate proxies and surface early risks. If estimated uplift exceeds
thresholds, teams should run targeted preregistered human studies to directly assess real-world
amplification. These can be conducted with AISIs to ensure methodological oversight and secure



coordination. Developers should adopt transparent reporting, including Human-alone (H), Al-alone
(AI), Human—AI (HAI) scores, uplift ratios, and confidence intervals in system cards.

5.2 For Researchers: Building the Theoretical and Empirical Foundation

A robust evidence base begins with theoretical foundations that model how human cognition, task
structure, and scaling laws interact to produce harmful capability uplift. Those theories require
empirical validation through adequately powered, preregistered studies that test which architectures
or safety interventions most effectively curb uplift. To speed cumulative progress, researchers should
release open prediction tools—collaborative models that estimate uplift from publicly reported system
descriptors and expose their associated uncertainty.

5.3 For Funders: Catalyzing a New Research Ecosystem

Targeted progress hinges on dedicated funding streams for uplift methodology, proxy—task validation,
and longitudinal panels that track users across model generations. Grants should include open-science
incentives, making data release to secure repositories a condition of support. Additionally, a rapid-
response mechanism—fast-turnaround micro-grants—can underwrite urgent studies when frontier
models exhibit unexpected capability jumps.

5.4 For Regulators and AISIs: Establishing Governance Infrastructure and Thresholds

Effective oversight starts with clear risk thresholds: bright-line triggers (e.g. U > 5.0 or an “infinite”
novel-capability flag) that automatically escalate regulatory scrutiny. Regulators could enforce
predeployment uplift estimates and studies, requiring preregistered uplift tests whenever forecasts
approach specific triggers. To harmonize efforts, coordination infrastructure hosted by AISIs should
maintain secure registries, aggregate cross-company telemetry, and operate shared predictive models
that inform rolling risk assessments.

These coordinated steps would transform harmful capability uplift from an ad hoc concern into a
measurable, governable quantity with continuous monitoring and evidence-based thresholds.

6 Alternative Views

“When the next checkpoint lands, earlier human-subjects results are obsolete.” Each harmful
capability uplift study leaves behind three durable assets with value even after a new model is
released. First, it provides a baseline experimental platform that can be reused for the new frontier
model, cutting setup time to hours. Second, it contributes to a calibrated transfer function linking
raw capability gains to harmful capability uplift. Third, longitudinal panels that follow the same
participants across model generations reveal learning curves and adaptation effects that one-off tests
cannot capture. Far from being disposable, early experiments become the foundation for faster,
cheaper, and more predictive safety evaluations as models evolve.

‘“Human-subjects studies are slow and expensive; they are not worth the time and effort.”
Focused “mini-studies” using preregistered high-risk tasks and online participant pools cost a few
thousand dollars, orders of magnitude less than training a large model. Additionally, these studies
will take place at the end of the model development cycle, likely after the post training concludes,
so will not overly burden the iterative stages of the development process. The cost of a missed red
flag—measured in potential societal harm—dramatically dwarfs the marginal expense of timely
human testing.

“People vary so much; human-subjects studies cannot deliver a single, reliable estimate of
harmful capability uplift.” Variation is precisely why we need human-subjects work. A well-
powered study samples participants across skill levels, background knowledge, and motivational
profiles, then quantifies not only the mean uplift but also the spread and tail risks. Hierarchical models
let researchers partition variance into human factors (expertise, incentives), model factors (fine-tuning,
scaffolding), and their interactions. That statistical map tells regulators whether a frontier model
only helps already-skilled actors—or whether it vaults complete novices over a dangerous threshold.
Synthetic benchmarks alone cannot reveal those distributional effects.



“Running adversarial human-subjects studies could itself leak dangerous know-how or give
participants new illicit skills.”” Well-designed uplift experiments compartmentalize sensitive in-
formation and strictly limit knowledge transfer. Tasks are decomposed so that no single participant
sees a complete end-to-end recipe; detailed solution keys are withheld; and all sessions take place in
controlled, logged environments. Oversight boards—such as the AISIs—should screen protocols
for info-hazard exposure and should require redactions or simulated data where appropriate. These
safeguards let researchers measure whether a model could enable harmful activity without actually
arming volunteers to carry it out.

“We can’t ethically study the real end-game—such as assembling a nuclear weapon—and
these proxy tasks do not tell us anything meaningful about that ultimate risk.” Safety science
routinely relies on validated surrogates when direct experimentation is impossible. Epidemiologists
study non-lethal viral analogues to forecast Ebola spread; aviation engineers crash-test sub-scale
models to predict full-airframe failure. The same logic applies to Al misuse: by decomposing the
weaponization pipeline into discrete, measurable steps—acquiring restricted design data, sourcing
materials, engineering a triggering mechanism—we can quantify uplift on each link and then model
how those gains combine to change overall success probability. A ten-percent uplift on a precursor task
may not map one-to-one onto bomb assembly, but risk models can convert those partial probabilities
into an aggregate threat estimate. In short, well-designed proxy studies do not trivialize existential
risks; they provide the only scientifically grounded way to quantify them without crossing the very
safety lines we aim to protect.

7 Conclusion

Frontier Al systems now amplify human cognition at a scale that outpaces our traditional safety pro-
tocols. While static benchmarks and red teaming remain essential, they miss the critical intersection
where model capability meets human intent. We therefore argue for evaluating harmful capability
uplift: the change in a person’s ability to carry out malicious tasks when assisted by a frontier model,
relative to existing public tools. Current empirical studies on this phenomenon remain too sparse and
methodologically inconsistent to inform policy with confidence. To address these gaps, we propose
a methodological blueprint featuring validated proxy tasks, statistical approaches tailored to safety
evaluation, and predictive models that enable generalization across rapidly evolving Al systems.

Implementing this framework requires coordinated action across the Al ecosystem. Model developers
should integrate real-time uplift dashboards and triggered human studies into their development
cycles. Researchers should build theoretical frameworks linking proxy tasks to real-world threats.
Funders should establish dedicated streams for uplift studies, while regulators—coordinated through
AlISIs—can set standardized thresholds and monitoring infrastructure. By institutionalizing harmful
capability uplift metrics alongside traditional benchmarks, we can transform Al safety from episodic
audits into continuous observation, ensuring that frontier models’ power to amplify malicious intent
remains within socially governable bounds while preserving the benefits of rapid innovation.
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8 Appendix I

8.1 Review of Existing Uplift Studies
See Table[ll

8.2 Systematic Framework for Proxy Task Validation

We propose a multi-dimensional embedding approach to quantify task similarity, addressing the
critical validity gap between proxy tasks and their target counterparts. The exact implementation
details remain to be determined through empirical validation and expert consultation, but we provide
an example framework to illustrate the approach and guide future development. Let each task ¢ be
represented as a vector v; € R? where d dimensions capture theoretically relevant characteristics.
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Table 1: Public evaluations of large language models on biosecurity, CBRN, and cybersecurity tasks.

Study Task(s) Design Sample Size Evaluation Results Data
Criteria
[Anthropic, Draft Between- Not provided Task score U=21 No
2025b] bioweapons subjects (significant)
acquisition
plans
[Mouton Plan biological- Between- 15 teams (4-6 Viability score U = 0.94 No
et al.}[2024] weapon attacks subjects per condition) (not significant)
[Patwardhart Research tasks Between- 100 (25 per con- Accuracy U=1.15 Yes
et al.l|2024] for biological- subjects dition) Completeness  (not significant)
threat creation Innovation
Time
Difficulty
[Anthropic, Answer CBRN Between- 30 participants Accuracy No data No
2025a] risk-relevant subjects (10 per condi- (not significant)
questions tion)
[Grattafiori| Plan chemical Between- Not provided Accuracy No data No
et al.,[2024]] or biological at- subjects Detail (not significant)
tacks Detection
Success
[Grattafiori| Complete Within-subjects 62 internal vol- Completion No data No
et al.}2024] cybersecurity unteers (62 per (not significant)
challenge stage)

8.2.1 Example Implementation

We define four primary dimension categories as an example implementation, though the specific
dimensions and their operationalization should be refined through domain expert input and empirical

testing:

Cognitive dimensions (c € R*):

Domain knowledge dimensions (d € R6):

¢ = [complexity, expertise, reasoning_type, time_horizon)

Resource dimensions (r € R*):

Risk dimensions (k € R*):

d = [programming, chemistry, biology, physics, social_eng, materials]

r = [tools, in formation_breadth, coordination, materials)

k = [detectability, reversibility, scale_potential, immediacy)

The complete task vector is the concatenation: v; = [c,d, r, k] € R18,

For tasks t; and t; with vectors v; and v;, we compute weighted similarity:

S(ti,t;)

w'(v; ©vj)

[whvillllw v

ey

(@)

3

“

&)

where w € R!8 represents domain-specific dimension weights and © denotes element-wise multipli-

cation.
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8.2.2 Empirical Validation Protocol

To establish when proxy task performance reliably predicts target task capability, we require empirical
validation through the following protocol:

1. Data collection: For n task pairs (p;, t;) where p; is a proxy and ¢; is the corresponding
target:

* Measure harmful capability uplift U,, on proxy task p;
* Measure harmful capability uplift U, on target task ¢;
» Compute task similarity S(p;, t;) using Equation (5)

2. Correlation analysis: Compute Pearson correlation p,, ; between U, and Uy, across all
pairs.

3. Validity threshold: Establish minimum acceptable correlation p,,;, (recommended:
pmin = 0.25 based on behavioral science standards for predictive validity [Cohen, 2013]).

We model the relationship between task similarity and predictive validity using a logistic function:

1

where P(Valid|S) represents the probability that a proxy-target pair with similarity S achieves
correlation p > pin.

8.2.3 Worked Example: Biosecurity proxy validation

Consider validating a proxy task for biological threat assessment:

Proxy Task: “Design a protocol for synthesizing a benign but structurally similar protein using
mail-order materials™

Target Task: “Generate acquisition plan for dual-use biological materials”
Feature Encoding:

« Proxy: v, = [0.6,0.7,0.8,0.4,0.2,0.8,0.7,0.3,0.2,0.3,0.5,0.6,0.3,0.4,0.9,0.8, 0.2, 0.3]
« Target: v, = [0.7,0.8,0.8,0.5,0.1,0.9,0.8,0.4,0.1,0.4,0.6,0.7,0.4,0.6,0.3,0.4,0.8,0.7]

Similarity Calculation: Using biosecurity weights above:

wi (v, OVvy)

S(p,t) = biol °P =0.78 (7

IW5io Vol Wi vell

Validation Decision: With S = 0.78, the similarity-validity model (Equation 7) predicts P(Valid) =

0.88, suggesting this proxy would likely achieve the required correlation threshold in empirical
testing.

In practice, the parameters 3y and /37 in the logistic validity model would be estimated via logistic
regression on empirical data, using observed similarity scores and validation outcomes across a range
of proxy—target task pairs. For illustration, we here assumed representative values 8y = 0.75 and
B1 = 1.59, which yield a predicted validity of 0.88 for a similarity score of 0.78.

8.2.4 Future Directions and Limitations

The framework presented here provides an example implementation to guide development, but several
key components require empirical validation. The specific dimensions chosen, their operational
definitions, and optimal weight vectors should be determined through systematic experimentation
with domain experts and validated against actual proxy-target performance correlations.

The current framework relies on expert-rated feature dimensions. Future work could incorporate
semantic embeddings from LLMs to capture task similarity in natural language descriptions:
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Shybrid(tia tj) = aneature(ti, tj) + (1 - Q)Ssemantic(tia tj) (8)

where Sgemantic Uses transformer-based sentence embeddings and « balances feature-based and
semantic similarity.

Rather than using fixed domain weights, future implementations could learn optimal weights through
multi-task optimization:

w* = argmax Y _Up(Uy,, Ur,) = piin] ©)

i=1

subject to similarity calculations using weight vector w.

The current framework requires domain-specific weight calibration. Research into universal simi-
larity metrics that transfer across threat domains (biosecurity, cybersecurity, disinformation) would
significantly improve the framework’s applicability and reduce calibration overhead.

Finally, a last promising extension is the generalization from single proxy-target pairs to sets of tasks.
In realistic deployment scenarios, proxies may need to predict capabilities across a set of target tasks,
or a capability may be best approximated by a suite of proxy tasks. This motivates extending the
similarity function and validation protocol to handle many-to-many mappings. For instance, we can
define set-level similarity as the mean pairwise similarity between all proxies and targets, and define
aggregate uplift functions over task sets. This enables evaluation of composite capabilities, such as
generalized threat readiness, and supports richer proxy validation pipelines for complex domains.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately reflect the paper’s contributions and
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Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
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contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
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much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
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Answer: [Yes]

Justification: The paper explicitly acknowledges the methodological challenges of studying
malicious tasks ethically, and the difficulty of generalizing findings across rapidly evolving
Al systems. Additionally, the authors acknowledge the paucity of existing empirical research
in this area and the inherent tension between conducting rigorous human-subjects research
on sensitive topics while maintaining safety and security constraints.
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* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: This paper does not include theoretical results, so this question is not applicable.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]
Justification: This paper does not include experiments, so this question is not applicable.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
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* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
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of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: This paper does not include experiments involving code, so this question is not
applicable.
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* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they

should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
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20


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification: This paper does not include experiments, so this question is not applicable.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: This paper does not include experiments, so this question is not applicable.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
Justification: This paper does not include experiments, so this question is not applicable.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).
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9.

10.

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: This paper follows the NeurIPS code of ethics by transparently addressing the
dual-use nature of harmful capability uplift research, explicitly discussing safety concerns
and potential misuse while proposing mitigation measures such as secure preregistration
through AI Safety Institutes and compartmentalized experimental designs that prevent
knowledge transfer to participants. The work prioritizes societal benefit by developing
methodologies to better assess Al safety risks rather than enabling harmful capabilities, and
recommends responsible disclosure practices and ethical oversight mechanisms throughout
the research process.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Yes, the paper discusses both potential positive and negative societal impacts.
On the positive side, it emphasizes how the proposed harmful capability uplift methodology
can enable “evidence-based governance,” preserve “Al’s transformative potential,” and help
society “reap the benefits of rapid Al progress while keeping its risks within governable
bounds.” Regarding negative impacts, the paper extensively addresses the dual-use nature
of the research, acknowledging that studying harmful capability uplift could potentially
expose sensitive methodologies, and proposes specific mitigation measures including secure
preregistration through Al Safety Institutes, compartmentalized experimental designs, and
ethical oversight to prevent knowledge transfer that could arm bad actors.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).
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Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We do not release any data or models, so this question is not applicable.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: This paper does not use existing assets, so this question is not applicable.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets, so this question is not applicable.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

23


paperswithcode.com/datasets

14.

15.

16.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing or research with human subjects,
so this question is not applicable.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing or research with human subjects,
so this question is not applicable.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components, so this question is not applicable.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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